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Abstract

Direct numerical simulation (DNS) of complex flows require solving the problem on parallel machines using high accu-
racy schemes. Compact schemes provide very high spectral resolution, while satisfying the physical dispersion relation
numerically. However, as shown here, compact schemes also display bias in the direction of convection – often producing
numerical instability near the inflow and severely damping the solution, always near the outflow. This does not allow its
use for parallel computing using domain decomposition and solving the problem in parallel in different sub-domains. To
avoid this, in all reported parallel computations with compact schemes the full domain is treated integrally, while using
parallel Thomas algorithm (PTA) or parallel diagonal dominant (PDD) algorithm in different processors with resultant
latencies and inefficiencies. For domain decomposition methods using compact scheme in each sub-domain independently,
a new class of compact schemes is proposed and specific strategies are developed to remove remaining problems of parallel
computing. This is calibrated here for parallel computing by solving one-dimensional wave equation by domain decom-
position method. We also provide the error norm with respect to the wavelength of the propagated wave-packet. Next,
the advantage of the new compact scheme, on a parallel framework, has been shown by solving three-dimensional
unsteady Navier–Stokes equations for flow past a cone-cylinder configuration at a Mach number of 4.

Additionally, a test case is conducted on the advection of a vortex for a subsonic case to provide an estimate for the
error and parallel efficiency of the method using the proposed compact scheme in multiple processors.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For parallel computing, domain decomposition method of Schwartz [1,2] is preferred in either its multipli-
cative or additive variations [3] – where a complex large problem is solved in smaller sub-domains indepen-
dently and exchanging overlap region data or information among conjoint sub-domains. While the original
Schwartz method uses overlapping sub-domains – this is inefficient in parallel computing procedures due to
various latencies of processes caused by interprocessor communications among sub-domains, specially for
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multiplicative Schwartz method (MSM) as compared to additive Schwartz method (ASM) [3] in parallel com-
puting. Larger the size of overlap region, more problematic it becomes for parallel computing, as it involves
larger data transfer among nodes. Thus, this overlapping region is removed in many variants where the non-
overlapping sub-domains interact with their neighbors via interface boundary condition(s) only. The non-
overlapping domains are also preferred when the grids are non-matching in contiguous sub-domains.

To remedy the slowness of convergence of the Schwartz’s method, Lions [4] proposed to replace Dirichlet
interface conditions by Robin interface conditions and the parameters of the artificial boundary conditions
(ABC) were obtained via optimization for faster convergence rate. The resultant convergence rate is function
of the parameters of ABC and on the amount of overlap among sub-domains. The latter actually increases
convergence exponentially for CFD problems governed by convection and diffusion operators, when the flow
is normal to the interface and the time step is small. For large time steps and when flow is tangential to the
interface then this type of exponential convergence is absent. This information helps in the decision of decom-
posing the given flow domain and would be used in our examples. Also, the non-overlapping sub-domains
suffer from poor convergence for high wave number components of the error [3]. It is to be noted that the
convergence properties of Schwartz’s method are critical for parabolic and elliptic PDEs and not so significant
for hyperbolic or propagation problems.

Most parallel computations are performed using explicit formulations to avoid problems of passing volume
of data among various sub-domains that becomes mandatory for implicit methods. Shang et al. [5] and Loc-
kard and Morris [6] have reported efficient parallel explicit algorithms for multi-physics problems. While some
efforts have been made in [7] towards developing parallel codes using high accuracy compact schemes, accord-
ing to these authors efficient implementation of compact schemes on parallel computers remains an open problem.
Basic compact schemes [8] have enormous advantages of large spectral resolution as compared to high order
explicit schemes and hence preferred, whenever possible. It has also been shown in [9,10] that compact schemes
with appropriate time integration schemes help preserve the physical dispersion relation in numerical sense –
known as the dispersion relation preservation (DRP) property, that is mandatory for DNS. However,
compact schemes with its associated one-sided boundary closure schemes (ABC) gives rise two inconvenient
features of these methods. Firstly, a large number of often-used compact schemes have numerical instability
problems near the inflow of the domain. Secondly, near the outflow, compact schemes give rise to massive
attenuation of the function. In [9], a matrix-stability analysis method was introduced that quantitatively iden-
tified these shortcomings of compact schemes. The authors also provided newer compact schemes that avoid
the above numerical instability problems. This peculiarity of compact schemes gives the solution a distinct bias
to the procedure. When compact schemes are used in an integral domain, the ensuing instability is not persis-
tent as the disturbance propagates downstream where the scheme has a stable behavior. However this will not
be the case when the domain is segmented in the streamwise direction. Thus, this prohibits usage of compact
schemes in individual sub-domains – where the solutions will display nonphysical growth and attenuation near
the sub-domain interfaces for convection dominated phenomenon. This property will be demonstrated by a
wave propagation problem solved in segmented overlapping domains. We will also suggest various means
to overcome this problem. All earlier attempts where conventional compact schemes have been used, the flow
domain is treated integrally, while various solution methods involved in compact schemes are computed in a
distributed fashion.

This is done by performing various operations associated with obtaining derivatives, integrals and/or filter-
ing operation via distributed computing. In most of these cases one is required to solve linear algebraic equa-
tions simultaneously. For the often-used compact schemes, this requires solving banded tridiagonal matrix
equations by Thomas algorithm that requires O(N) operations for N unknowns. In [7] pipelined implementa-
tion of the Thomas algorithm (PTA) is discussed where various latencies of processors are reduced by per-
forming non-local data-independent computations, solving for other spatial derivatives during forward and
backward operations in PTA. Alternative to PTA is discussed in [11,12], where newer algorithms are proposed
that replaces the forward and backward recursions of PTA by matrix-vector multiplications. However, this
leads to significant increase in floating-point operations, defeating the rationale of faster computing by
parallelization.

In another alternative a parallel diagonal dominant (PDD) algorithm was proposed in [13] for solving
Toeplitz tridiagonal system arising from the usage of compact schemes. As the PDD algorithm is necessarily
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an approximation, the enhanced accuracy of compact schemes is compromised, in addition to incurring higher
computational effort as compared to PTA.

In all parallel implementations referred to above, computations are done by solving the problem together
by executing PTA or PDD algorithm in different processors, that imposes latencies and inefficiencies of com-
putations. The above discussion raises the possibility to consider a strategy where one splits the full problem
into multiple sub-domains and use Schwartz’s method – eliminating all the problems of PTA and PDD algo-
rithms, provided one can remove the unphysical bias of compact schemes. This can be attempted by a large
overlap of contiguous sub-domains- since it has been established in [3] that the application of Schwartz’s
method via domain decomposition will have little or no problems of convergence if the overlap is sufficiently
large. Such overlap of sub-domains are also required, as the analysis of [9] indicates that the problematic bias
of traditional compact schemes exist over the first and last six to seven nodes in the domain. However, this
would mean additional repetitive computations over twelve to fourteen nodes in every sub-domain. It would
be preferable if the number of overlapping nodes can be reduced significantly. In a recent effort [14], a new
compact scheme has been introduced that removes the asymmetry of basic compact schemes, in solving the
sub-critical instability problem of plane Poiseuille flow that requires obtaining very high accuracy symmetric
equilibrium solution. In the present research, a new class of symmetrized compact schemes is established
furthermore by designing and using two such unbiased schemes to: (a) solve a wave propagation problem;
(b) solve three-dimensional unsteady Navier–Stokes equation for high Mach number supersonic flow
(M1 = 4.0) past a cone-cylinder configuration; and (c) convection of a vortex governed by inviscid equations
for subsonic Mach number (M1 = 0.4). It should however, be pointed out that while the bias of compact
schemes can be minimized – it cannot be completely removed. In such a situation, a Schwartzian domain
decomposition may still give rise to numerical problems for parallel computing near the interfaces that
requires detailed investigation. In the present work, we want to reduce the overlap to a minimum, so that
an efficient parallelization is made possible. Apart from the usage of larger overlap of contiguous sub-domains
to reduce numerical problems in parallel computing, we also propose here to use filtering in the physical space
[15] or adding artificial numerical dissipation to remove the same problems.

The paper is formatted in the following manner. In the next section a new symmetrized compact scheme is
developed. The developed scheme is tested for the propagation of a wave-packet following the one-dimen-
sional wave equation. This will help establish the numerical properties of the developed symmetrized compact
scheme for its stability and dispersion relation preservation property with respect to different parallelizing
strategy using domain decomposition method. We also show the effects of physical plane filters in controlling
some numerical problems of parallel computing. In Section 3, we use a symmetrized scheme to solve the three-
dimensional supersonic flow at M1 = 4.0 past a cone-cylinder assembly by solving the unsteady three-dimen-
sional Navier–Stokes equation. To test the ability of the proposed method for elliptic problems, we have stud-
ied the convection of a shielded vortex in inviscid flow at M1 = 0.4 in Section 4. The paper closes with some
conclusions in Section 5.

2. Development of a symmetrized compact scheme for parallel computing

It is well known that compact difference schemes [8,9] used for solving PDEs possess very high spectral
accuracy in resolving various spatial scales. For CFD and many other related activities, these schemes are used
to evaluate various derivatives in an implicit manner. For example, to evaluate first derivatives u 0 of a vector
u(xj), j = 1, . . .,N one can write it down as,
½A�fu0g ¼ ½B�fug: ð1Þ

While this representation is valid for both explicit (with A as an identity matrix) and implicit methods, an
equivalent explicit representation of this general form can be written down as,
fu0g ¼ 1

h
½C�fug ð2Þ
where h is the uniform grid spacing used for discretizing the domain. However, one does not work with C

matrix while using compact schemes. Many practical problems require non-periodic boundary conditions
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(as provided from physical considerations or needed to close the system given in Eq. (1) – referred to as ABC
in Section 1) that mandates one-sided stencils near and at the boundary nodes. This requirement makes A and
B matrices non-symmetric (non-Hermitian). In the interior of the domain, symmetric entries of the B matrix
correspond to non-dissipative central schemes, while non-symmetric entries of B matrix arise for upwinded
compact schemes – see [8,10,14] for details. This shows that whether we choose a symmetric or non-symmetric
interior stencils, one-sided boundary closure schemes for non-periodic problems, make A and B matrices
always asymmetric. Effects of such asymmetric stencils near boundaries percolate in the interior of the com-
puting domain. In the following we report a very low-bias compact scheme based on the optimal scheme
OUCS4 introduced in [10]. This scheme was optimized to minimize truncation error of a central compact
scheme whose stencils are already given in [10].

If the first derivatives at different nodes are represented by prime, following central stencil is used for inte-
rior points,
au0j�1 þ u0j þ au0jþ1 ¼
1

h

X2

k¼�2

akujþk ð3Þ
with a0 = 0, and a�2 = �a2; a�1 = �a1. While this stencil alone is sufficient to evaluate first derivatives for
periodic problems, for non-periodic problems we have to supplement the relation given by above – as it cannot
be used directly near and at the boundary due to the stencil size on the right-hand side. This is circumvented by
using the following one-sided explicit boundary closure schemes for j = 1 and j = 2, respectively [9],
u01 ¼
1

2h
ð�3u1 þ 4u2 � u3Þ ð4Þ

u02 ¼
1

h
2c2

3
� 1

3

� �
u1 �

8c2

3
þ 1

2

� �
u2 þ ð4c2 þ 1Þu3 �

8c2

3
þ 1

6

� �
u4 þ

2c2

3
u5

� �
ð5Þ
Similarly, one can write down the boundary closure schemes for j = N and j = (N � 1) using cN�1. Note that
the sign of the coefficients in boundary closure schemes are reversed on the right hand side on the opposite
boundaries and this lead to large difference of added numerical dissipation near the boundaries causing asym-
metry. With the help of relations given in Eqs. (3)–(5), one can construct A, B and C matrices in Eqs. (1) and
(2) readily. The interior stencil, given by Eq. (3) applies at j = 3 to N � 2 and its structure makes A a tridiag-
onal matrix, while B is a penta-diagonal matrix. We introduce briefly the analysis method [9,10] below that
explains the above mentioned asymmetry clearly.

The analysis is performed in the wave number plane, with the unknown expressed in terms of original and
bi-lateral Laplace transform pair,
uðxjÞ ¼
Z kmax

kmin

UðkÞeikxj dk ð6Þ
where kmin and kmax denote the minimum and maximum wave numbers that has been resolved by the discrete
computing method. Usage of the bilateral Laplace transform instead of Fourier series removes the restriction
of periodicity for the unknowns. In spectral methods, kmax = �kmin = p, as one works with complex variables
with its complex conjugate, so that the represented function is purely real. Other discrete computing methods
work in the physical plane with kmin = 0 and all the variables are 2p-periodic. The derivative of the function at
xj can be expressed for an exact method as u0ðxjÞ ¼

R
ikUðkÞeikxj dk and corresponding expression for the

numerical derivative using other discrete computing methods can be written as,
u0ðxjÞ ¼
Z

ikeqUðkÞeikxj dk
Using Eq. (6) in Eq. (2) and comparing with the above, it is readily seen that
ikeqðxjÞ ¼
XN

l¼1

Clje
ikðxl�xjÞ ð7Þ
Thus, the jth row of C matrix determines the derivative at the jth node – as given by keq in Eq. (7). In [10] the
following values of the parameters were obtained and termed as OUCS4: a1 = 1.546277, a2 = 0.329678,
c2 = �0.025 and cN�1 = 0.09.
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Asymmetric behavior of compact schemes can be clearly noted from Eq. (7) due to the asymmetric C

matrix. The reason for the asymmetry of C is due to one-sided boundary closure schemes given by Eqs. (4)
and (5). Symmetrization of C matrix can be brought about by either of two methods. In the first method
we simply take an arithmetic average of the entries of C matrix in Eq. (2) about the center row (that represents
the middle of the domain), thereby making the derivative symmetric and removing the bias of the compact
scheme. This was suggested and followed in [14]. There is the second method where we evaluate the derivatives
using Eq. (1) at all nodes by going from j = 1 to N and going from j = N to 1 in each sub-domain. The sym-
metrized derivative are taken as the average of the derivatives obtained in following these two directions.
While these two alternative procedure of symmetrizing the derivatives are identical, in the first procedure
one performs N2 multiplications and in the second process this involves solving Thomas algorithm twice,
thereby performing 10N operations. Thus, if one chooses N > 10, the second method is faster, and such a
choice of N is always made to avoid the negative effects of boundary closure schemes. We will refer to this
method of evaluating derivatives as the S-OUCS4 scheme in the rest of the paper. It is important to investigate
that apart from removing the bias of compact schemes, whether the new scheme retains or improves the
numerical properties, the amplification rate and DRP. These properties are studied here with respect to the
model one-dimensional linear convection equation that represents many convective flows and wave
phenomena,
ou
ot
þ c

ou
ox
¼ 0; c > 0 ð8Þ
Eq. (8) is non-dispersive and convects the initial solution to the right with speed c i.e. the group velocity is
equal to the phase speed c. This equation helps study numerical instability and most importantly the disper-
sion error and DRP property [9,14], using physical and numerical group velocity. It is necessary to ensure that
the numerical group velocity is as close to the physical group velocity as possible for the resolved space-time
scales. This is discussed next along with the numerical stability of space-time discretization schemes for Eq.
(8).

Consider the numerical solution of Eq. (8) subject to the following initial condition,
u0
m ¼ uðxm; t ¼ 0Þ ¼

Z
A0ðkÞeikxm dk ð9Þ
The exact solution of Eq. (8) can be written down in terms of the initial solution as,
uexactðx; tÞ ¼
Z

A0ðkÞeikðx�ctÞ dk ð10Þ
The numerical solution can be represented at x = xm and t = tn by un
m ¼

R bU ðk; tnÞeikxm dk, so that a numerical

amplification factor can be introduced by GðkÞ ¼ bU ðk;tnþ1ÞbU ðk;tnÞ
.

One can compare the exact solution with that obtained numerically by using Eq. (9) in discretized Eq. (8) to
obtain general numerical solution [10] as,
un
m ¼ uðxm; tnÞ ¼

Z
A0ðkÞðG2

r þ G2
i Þ

n=2eikðxm�nbÞ dk ð11Þ
where the numerical amplification factor is given by G(k) = Gr(k) + iGi(k) and tanb = �Gi/Gr. The numerical
group velocity is found from the numerical dispersion relation as given by [10],
V gN ðkÞ
c
¼ 1

N ch
db
dk

ð12Þ
where Nc = cDt/h is the CFL number.
For non-periodic problems, the corresponding quantities will vary from node to node. If for a discrete com-

puting scheme the spatial derivative at the jth node is evaluated using Eq. (7), then it is given by,
ouj

ox
¼ 1

h

XN

l¼1

Clje
ikðxl�xjÞuj ð13Þ
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Utilizing this in Eq. (8) one gets
ouj

ot
þ cuj

h

X
Clj½cos kðxl � xjÞ þ i sin kðxl � xjÞ� ¼ 0 ð14Þ
This equation can be used to obtain wave-number dependent amplification factor at the jth node, Gj(k), once
the time integration method is fixed. We have used the four-stage Runge–Kutta (RK4) time integration strat-
egy here, as it was noted to have good numerical stability and DRP property [14], when used with traditional
compact schemes. The amplification factor for the RK4 time integration scheme, for jth node can be shown to
be given by [14]:
Gjðkh;N cÞ ¼ 1� Aj þ
A2

j

2
�

A3
j

6
þ

A4
j

24
ð15Þ
where
Aj ¼ N c

XN

l¼1

Clje
ikðxl�xjÞ ð16Þ
Using Eqs. (15) and (16), one obtains the amplification factors at all spatial nodes for any combinations of kh

and Nc for RK4 time integration scheme. In the above, we can use the symmetrized C matrix by replacing the
entries of the jth and (N � j + 1)th rows of the C matrix by their arithmetic average, where N is the number of
points. Such symmetrizing operation will also alter the above discussed numerical properties. In Fig. 1, jGjj at
different representative nodes are shown by taking N = 101. On the left column of Fig. 1, shown are the ampli-
fication rate contours for the jth node and on the right corresponding results for (N � j + 1)th nodes for the
original OUCS4 method. In the middle column of Fig. 1, corresponding results are shown for the S-OUCS4
scheme at the same nodes. Results for j = 2 exhibit unstable nature, even for very small values of Nc, while for
j = 100 we note excessive damping for the OUCS4 scheme. In contrast, S-OUCS4 method has significantly
improved amplification rates for j = 2 and (N � 1). Similar improvements have been brought about at all
near-boundary points. It is seen that there is negligible asymmetry of jGj for j P 8 onwards for the basic
OUCS4 scheme that is removed by symmetrization.

In Fig. 2, the effects of symmetrizing is shown on VgN/c, by plotting the properties of OUCS4 scheme on
either side, with the S-OUCS4 value plotted in the middle column. Once again, an overall improvement of
DRP property by symmetrizing is noted. It is also seen that one has to take very small values of Nc to avoid
effects of spurious dispersion.

Informations contained in Figs. 1 and 2 can be effectively used for solving problems using parallel comput-
ing via domain decomposition. To calibrate the developed procedure, we solve Eq. (8) for the propagation of a
wave-packet whose initial profile and location is given by,
u0ðxÞ ¼ e�/ðx�x0Þ2 sinðk0xÞ ð17Þ

where / = 50 and x0 = 1.5, is the center of the packet in the physical plane and k0 = 0.838242/h is the center of
the packet in the spectral plane. The problem is solved in the domain 0 6 x 6 10 using four equal length sub-
domains for parallel computing. Initially, the center of the packet lies in the interior of the first sub-domain.
Implementation of the S-OUCS4 scheme for this problem is made following the overlap of the sub-domains
shown in Fig. 3, i.e. the qth processor receives information from (q ± 1)th processors as indicated by the ar-
rows in the figure. Thus, the evaluation of derivatives by compact scheme is performed in the qth processor
from i = �1 to M + 2, while the problem is solved from i = 1 to M.

The specific wave packet given by Eq. (17) is considered to convect to the right at the phase speed, c = 0.5.
Initially, this problem is solved sequentially by using a single grid with 664 points and Nc = 0.02, so that
Dt = 0.0006 and for this parameter combinations one gets stable solution that is shown in Fig. 4(a) at the indi-
cated time instants. Next, the same problem is solved using four nodes of a parallel computer with 12 points
overlapping – six for each of the neighboring sub-domains. Thus, the number of points per processor in this
case is 178 and the results are as shown in Fig. 4(b) at the same time instants, as that is shown for the sequen-
tially computed results in Fig. 4(a). A direct comparison reveals that the two computed packets are exactly
identical. The only differences that one notices are the appearance of negligibly small spurious wave-packets
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in Fig. 4(b) near the interface boundaries visible in the frames at t = 2.4, 4.2, 9 and 15. These small spurious
packets are due to the properties of near-boundary stencils of S-OUCS4 and can be removed by having larger
overlap regions. Also, it has been pointed out [3] that with larger overlap the convergence rate of the Schwartz
method improves further. In the present computations, there was no need to iterate the solutions in different
sub-domains as the correct results were obtained in single pass of computations.

As noted in the case of Fig. 4, to obtain the solutions by parallel computing, we required to add extra 12
points per processor and that also has some negligibly small spuriously dispersing errors near the sub-domain
interfaces. A complete removal of which would require larger overlap region among contiguous sub-domains
and hence extra data communications. This naturally raises the question, as to whether one can obtain accu-
rate results via parallel computing using lesser number of overlapping nodes while using other methods of
error control near the interfaces. For this purpose, we decided to take only 2 overlap layers i.e. the number
of points per processor in this case reduces to 170. The results of this simulation, without any error control,
is shown in Fig. 5(a) at the indicated time frames, that show large amplitude (but decaying) error-packets that
move downstream after initial upstream traveling error-packets are created that is reflected from the inflow of
the domain. When the wave-packet exit the first sub-domain at around t = 2.0, small error-packets are gen-
erated locally, wherever the signal changes sign, that travel upstream. At t = 2.4 this process creates four such
packets moving upstream at Vg � �2c. Fourier transform of the solution at this time indicates the presence of
an additional peak at kh = 3.05. From Fig. 2, it is seen that this matches with the above propagation speed of
the error that does neither grow or decay significantly as from Fig. 1, one notes the value of jGj at the same kh

to be close to one. This process of creating error packets continues as the signal encounters every interface.
Such upstream propagation of error packet is also noted in Fig. 4(b), when six point overlap was considered.
However, the amplitude of error was comparatively smaller, that could be further reduced by even larger
overlap.

However, from Fig. 5(a), one also notices large reflected downstream propagating packets from the inflow
of the domain. These packets are created due to the reflection of those small upstream propagating error-pack-
ets from the inflow. FFT of the solutions at t = 0.0 and 4.2 revealed identical spectrum, implying these
reflected packets to have the same kh as that of the input signal. It is not known, at this stage, the reason
for such scale selection of these reflected error-packets from inflow.

To remedy the situation, we have filtered the solution in the physical space in each sub-domain separately
following the sixth order filters given in [15] as,
af ûi�1 þ ûi þ af ûiþ1 ¼
X3

n¼0

an

2
ðuiþn þ ui�nÞ ð18Þ
where �0.5 < af 6 0.5, with higher the value of af lesser the effect of filtering and attenuation at high wave
numbers. In this equation, variables with hats indicate filtered quantities and the coefficients of the filter
are as given in Table IV of [15]. This filter is used from i = 2 to (M � 1) for the nodes as shown in Fig. 3.
For i = 0,1,M and (M + 1)th nodes, the filters given by Eq. (16) of [15] are used – that are also sixth order
accurate. In Fig. 5(b) solutions are shown when we used the above filters after every fifty time-steps with
af = 0.499. The high value of af and the filtering frequency is determined by matching with the exact solution.
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For example, higher frequency of filtering would lead to significant attenuation of the signal itself. In the same
way, lower values of af also lead to the same problem of attenuation. Thus, it is seen that high accuracy fil-
tering allows one to obtain correct solution with minimum overlap of sub-domains and at the same time
avoiding the numerical problems due to ABC of compact schemes for parallel computing. In the following
sections, we use this parallel computing procedure to solve practical problems of interest, the results of which
are essential for flow transition studies.
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Next, we perform some additional cases of wave-packet propagation to show the behaviour of the error
with respect to the wavelength of the propagated signal for different overlap and filter strategies. The
propagating wave-packet is given by Eq. (17), with / = 16 and the initial location is such that the numer-
ical properties displayed in Figs. 1 and 2 for the interior stencil applies in these cases. For these cases, the
domain, the number of points and spacing is the same, as in the case of Figs. 4 and 5. We have varied k0h

from 0.4 to 1.6 for the following: Case-A: where we use two-point overlap in the domain decomposition
method followed by filtering the solution periodically; Case-B: where we use six-point overlap without any
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filtering and Case-C: where the solution is obtained using six-point overlapped domains followed by peri-
odic filtering.

The error in all these cases is calculated from, L1ðErrorÞ ¼
PM

i¼1jðuiÞexact � ðuiÞcomputedj=M . We note that the
error is caused primarily by: (i) attenuation of the actual signal; and (ii) by the dispersion of the computed
signal. For the former source of error, the magnitude can be at most equal to the area under the wave-packet,
in the absence of phase error. While the maximum error that can be created by dispersion alone- in the absence
of attenuation – is equal to twice the area created under the wave packet. Therefore, in the presence of dis-
persion and dissipation, the maximum error can at most be equal to twice the area under the curve.

In Fig. 6(a), L1(Error) is plotted for the above-mentioned cases for different values of k0h, that shows the
error to be of same order of magnitude, up to k0h @ 1. For k0h = 1.2, it is noted that Case-A has the least error.
Case-B, like Case-A produces reflection at the domain interface that travels upstream and is left uncontrolled
that causes this case to have largest error in Fig. 6(a), for all k0h except for 1.4. This reflection of Case-B is
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compared with the exact solution for a wave packet with k0h = 1.2.
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removed by filtering in Case-C. We have noted, that the two-point overlap case has larger reflected signal from
the domain interface as compared to the six-point overlap cases. Thus, by the removal of the reflected signal
by filtering causes the main signal to attenuate more for Case-A as compared to Case-C. We also note the
error decreasing rapidly for k0h = 1.4, for all the cases, with Case-C showing the least amount of error. To
understand this behavior for the error, we note that in all these cases, G is equal to one, identically, as can
be verified from Fig. 1 for the combinations of k0h and Nc. However, the dispersion error, exemplified by
[VgN/c � 1] (obtained from Fig. 2), shows its variation with k0h for the fixed Nc, as shown in Fig. 6(b). This
shows a rapid decrease in dispersion error, as k0h increases from 1.2 to 1.4. Also, from the same figure, we note
that the dispersion error increases rapidly above 1.45465 (where the dispersion error is identically zero), that is
marked as point P in this figure. This feature explains the rapid increase of error at k0h = 1.6 in Fig. 6(a).

Case-A show less error as compared to Case-B and -C for the following reason. Both the two- and six-point
overlap cases, have identical dispersion error i.e. the computed signal is shifted with respect to the actual sig-
nal- as shown in Fig. 6(c) for k0h = 1.2. But, Case-A also experience larger attenuation of the main signal as
discussed above, as compared to Case-C results shown in Fig. 6(c). This damping has an equivalent effect of
producing lesser departure of the computed signal from the actual one for Case-A. Despite this apparent con-
tradiction, it is seen that more the overlap, one gets higher accuracy of the computed signal.

The feature of the dispersion error, as suggested in Fig. 6(b), is also tested by computing the wave-packet
propagation cases with k0h = 1.2, 1.4 and 1.45465. The last case is purposely chosen, as Fig. 6(b) indicates this
to produce zero dispersion error. The computed results, using the strategy of Case-C, are shown in Fig. 7
along with the exact signal. It is noted that for k0h = 1.2, VgN = 0.97112c – with largest dispersion error
among these three cases. For k0h = 1.4, the error reduces as VgN = 0.991034c, while for k0h = 1.451465,
VgN = 1, implying zero dispersion error. However, the results in Fig. 7, show for k0h = 1.45465 some disper-
sion near the tails of the signal. This is clearly understood by noting that the wave-packet of Eq. (17) repre-
sents a spectral distribution about the above central values of k0h. For the Hermitian property of the signal,
the tails correspond to the farthest points from the central wave numbers. For k0h = 1.45465, the dispersion is
exactly zero at the center, while it is not identically zero on either side that is responsible for the residual depar-
ture from the exact solution.

3. Parallel computation of supersonic flow past a cone-cylinder configuration

The direct numerical simulation (DNS) of the high supersonic flow past a cone-cylinder configuration is
sought here to be developed as an essential research tool for studies on Laminar-turbulent transition at hyper-
sonic speed. Transition has a dramatic effect on heat transfer, skin friction and separation and is currently not
predicted satisfactorily with available research tools. This effect is critical to reentry vehicles and air-breathing
cruise vehicles, yet the physics of the transition process in not well understood. Since, the computational size
of such problems to be solved with DNS is very large, it is mandatory to have a parallel DNS code that is
highly efficient in terms of parallel computation. Here, we are going to report the solution of full three-dimen-
sional NS equations in generalized coordinates, to show the superiority of the developed compact scheme (in
parallel framework) over the other existing compact schemes in the literature. The essential idea here is to
obtain an accurate equilibrium laminar flow past the cone-cylinder at high Mach number and Reynolds num-
ber. Thus, the presented results are by no means to be interpreted as DNS results. They essentially represent an
ability of the symmetrized compact scheme to handle large problems in parallel computing. Having said that,
one also notes the feasibility of stable computations with coarse grid that ensures the success of any compu-
tations with more refined grids and smaller time steps, as the information carried in Figs. 1 and 2 would clearly
indicate.

3.1. Governing equations

In this section we have used the symmetrized scheme (S-OUCS4), for the solution of the flow past a three-
dimensional cone-cylinder configuration at a free stream Mach number of 4. Governing equations are the full
three-dimensional unsteady Navier–Stokes equations in strong conservation form as given below:
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for the unknown state vectors, bQ ¼ Q=J , the inviscid and viscous flux vectors in generalized coordinates are
represented as,
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bE ¼ ð1=JÞðnxEþ nyFþ nzGÞbF ¼ ð1=JÞðgxEþ gyFþ gzGÞbG ¼ ð1=JÞðfxEþ fyFþ fzGÞcEv ¼ ð1=JÞðnxEv þ nyFv þ nzGvÞcFv ¼ ð1=JÞðgxEv þ gyFv þ gzGvÞcGv ¼ ð1=JÞðfxEv þ fyFv þ fzGvÞ

where
Q ¼ ½q; qu; qv; qw; qe�T

E ¼ ½qu; qu2 þ p; qvu; qwu; ðqeþ pÞu�T

F ¼ ½qv; quv; qv2 þ p; qwv; ðqeþ pÞv�T

G ¼ ½qw; quw; qvw; qw2 þ p; ðqeþ pÞw�T

Ev ¼ ½0; sxx; sxy ; sxz; usxx þ vsxy þ wsxz þ qx�
T

Fv ¼ ½0; syx; syy ; syz; usyx þ vsyy þ wsyz þ qy �
T

Gv ¼ ½0; szx; szy ; szz; uszx þ vszy þ wszz þ qz�
T

The various stress tensor components (sij) and the heat flux components (qi) can be further written as:
sxx ¼ 2l
ou
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þ kr:V
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In the expressions above, u, v, w are the Cartesian velocity components, q is the density, p is the pressure and e

is the total energy per unit mass defined as, e = p/[(c � 1)q] + (u2 + v2 + w2)/2. The perfect gas relationship
p ¼ qT=ðcM2

1Þ is also assumed; c = cp/cv is the ratio of specific heats and is taken as 1.4 in the present case.
Here, l is the dynamic viscosity and k from the Stokes’ hypothesis is �2l/3. The Jacobian of grid transfor-
mation is represented as J in the expressions above. All the flow variables have been normalized by their
respective free stream values except for pressure, which has been non-dimensionalized by q1c2

1. Reynolds
number is indicated as Re in Eq. (19), which is equal to 1.12 · 106 for the present problem, based on c1
and the cylinder diameter (D). Also, Pr is the Prandtl number in the above expressions and is equal to 0.7
in the present computation.
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3.2. Grid system and computation procedure

The computational domain for the present problem is shown in Fig. 8. Cone angle is 9.46� in the present
case. All the lengths shown in the figure are non-dimensionalized by the cylinder diameter (D). Rotation of the
shown two-dimensional grid about the center line produces an axisymmetric three-dimensional grid with a
total of 181 points in axial direction (x), 85 points in radial direction (r) and 45 points in azimuthal direction
(h). In the radial direction we have solved the problem using the hyperbolic-tangent stretched grid, as used in
[14]. The minimum grid size close to the solid surface, as shown in Fig. 8, is Dr = 0.0004D. The grid used in the
problem is orthogonal everywhere except over the cone surface. Numerical errors due to this non-orthogonal-
ity has been successfully controlled in the present problem by using the scalar dissipation model given in [18].
The computational domain is divided into 20 sub-domains in the axial direction using two point overlap, as
shown in Fig. 3.

Based on the results of the last section, we have used the symmetrized compact scheme in the axial direction
and OUCS4 in the other two directions, for the discretization of spatial derivatives for the convection terms.
In the radial direction we have profitably used the bias of OUCS4 to damp out reflections from the lateral
boundaries as it provides a buffer domain like behavior at lateral boundaries. In the azimuthal direction, inte-
rior stencil of OUCS4 is used as this is the periodic direction. Viscous terms have been discretized using second
order central difference scheme. Time integration is performed by using four stage Runge–Kutta method, as
given in the last section. It is noted that in an axisymmetric structured grid the Jacobian approaches infinity at
the centerline, marked as AB in Fig. 8. Therefore, all of the grid metrics become indeterminate at the center-
line, making it impossible to integrate the solution in time. However, the solutions (conservative variables) at
the centerline can be interpolated from the neighboring values. In the present work a fourth order interpola-
tion of [17] is used along AB. It can be written as,
r

Inflow

Fig. 8.
to gen
f0 ¼
13ðf1 þ f�1Þ þ 8ðf2 þ f�2Þ � 5ðf3 þ f�3Þ

32
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Showing the grid arrangement for flow past a cone-cylinder configuration at M1 = 4. This arrangement was rotated about X-axis
erate the full 3D axi-symmetric grid. Number of points used are: Nx = 181, Ny = 85 and Nh = 45.
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where the negative indices mean the values in the opposite direction across the centerline. This results in as
many sets of interpolated values as half the number of grid points in the azimuthal direction. A unique value
of the centerline solution is finally obtained by averaging these values.

High accuracy schemes in space and time resolve a wider range of wave number or frequency, as noted
from Figs. 1 and 2. However, there are still some high wavenumber/frequencies which gives rise to spu-
rious numerical oscillations due to dispersion – note the VgN/c for kh > 2.4 in Fig. 2 for all interior nodes.
This is true specially in a region where grid is non-orthogonal. To avoid such numerical errors from con-
taminating the result, a scalar dissipation model of [18] is used in the present computation, taking
a2 = 0.25 and a4 = 1/64. This will also help us in getting rid of spurious reflections from the interface
boundaries, as we experienced in the last section with the propagation of wave-packet. This artificial dis-
sipation model is implemented only at the last stage of the Runge–Kutta time integration scheme in order
to minimize the computational costs.

In addition to the reflection from the interfacial boundaries, there might be some reflection from the geo-
metrical boundaries. Such reflection from the inflow was observed in Fig. 5(a), where the reflected wave had
amplitude much higher than the incident one. Therefore, in addition to the requirement of these high accuracy
schemes and artificial numerical dissipation, one must have a non-reflecting boundary condition to allow
smooth passage to the incoming waves. To meet this requirement, generalized characteristic boundary condi-
tion of [16] is used in the present computation, for conditions at the solid wall. Free stream values have been
used at all other boundaries of the computational domain, except at the outflow, where simple second order
extrapolation [19] is used to generate a non-reflecting condition. Such simple conditions at all other bound-
aries are possible because of high free stream Mach number (M1 = 4) of the present problem. For M1 > 1
the characteristic convection speed of all the waves is unidirectional, i.e in the direction of the mean flow,
whereas for M1 < 1, one is forced to use characteristic boundary condition at the inflow/outflow, in order
to achieve a reflection-free condition. In the azimuthal direction periodic boundary condition is used for this
axisymmetric geometry.

3.3. Results and discussion

Starting with a uniform flow condition everywhere, Eq. (19) is integrated in time following the computation
procedure discussed in the previous subsection. The time step for the present computation is small
(Dt = 3 · 10�5) so as to maintain a near-neutral behavior of the numerical schemes for long time integration
[14]. The Mach number contours, hence obtained are shown in Fig. 9(a), at the indicated times. Contours are
shown in the (r–x)-plane for h = p/2. No reflection is observed either at the interfacial boundaries or the out-
flow/inflow boundaries – as this is effectively controlled by selective addition of second and fourth order dis-
sipation [18]. One notes the formation of an oblique shock at the vertex of the cone and an expansion fan at
the cone-cylinder junction. Cross-sectional view of the contours are plotted in Fig. 9(b), at x/D = 4.45, marked
by dotted lines in Fig. 9(a). One notes a perfectly symmetrical result at these cross-sections and no visible
change in the contours, with time but there are changes in the contours very close to the surface that have
not been plotted here.

To show the superiority of the symmetrized compact scheme (S-OUCS4) over the OUCS4 scheme in the
axial direction, another case is run using OUCS4 in the axial direction as well, using two point overlap at
the interface boundaries. Results obtained are very revealing in showing the difference between these two sets
of calculations as shown in Fig. 10. In Fig. 10(a), difference in Mach number contours obtained by S-OUCS4
and OUCS4 schemes is shown at t = 0.5. Significant differences are noted near the cone vertex and the cone-
cylinder junction. The magnitude of maximum difference is noted in all the frames of Fig. 10 for different
quantities. The values differ in first decimal place, very close to the surface and keeps on reducing as we move
up in radial direction, as one would expect from such high Mach number flow. Similar trends are seen in
Fig. 10(b) and (c), where difference in pressure and density contours are shown at the same time. It is to be
noted that same code is used for the two cases, just that S-OUCS4 is replaced by OUCS4 in the latter in axial
direction. This leads us to conclude that these differences are only due to the near-boundary behavior of
OUCS4, which develops a directional bias in the derivatives, causing more reflection from the interfacial
boundaries. One can note this directionality of OUCS4 from the jGj and VgN/c contours shown in Figs. 1
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and 2. From the same figures, one can note the improvement in stability characteristics of S-OUCS4 over
OUCS4, specially at the near boundary nodes. It is very difficult to make out near wall behavior from the con-
tour plots of Fig. 10. For this reason, relative change in coefficient of pressure (Dcp/cp) between these two sets
of calculations, is plotted in Fig. 11, for j = 1–3, with j = 1 identifying the wall itself. It is noted that differences
are as high as 2.0, which can certainly affect calculations based on these cp values. These differences are small
 X12r

with 2 points overlap, (a) for h= 90� location, (b) the cross-sectional view at the dotted location of figure (a).
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everywhere, except at few locations. These locations are, at the cone vertex and the junction of the cone and
cylinder. Reason for jumps in Dcp/cp values at these two junction is well understood as, one of them corre-
spond to the shock location and the another one correspond to the expansion fan. But there are few more
jumps near x = 6.5–7.0, reason for which is not clear. This could be because of the interaction of the oblique



X

Δc
p
/c

p

0 2 4 6 8

0

0.5

1

1.5

2

j = 1

X

Δc
p
/c

p

0 2 4 6 8

-5

0

5

10

15

20

25

30

35

j = 2

X

Δc
p
/c

p

0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

j = 3

Fig. 11. Relative difference in pressure coefficient (cp) between the OUCS4 and S-OUCS4 scheme computations is shown along the
streamwise direction, at the indicated j level from the solid surface, with j = 1 as the wall itself.

T.K. Sengupta et al. / Journal of Computational Physics 220 (2007) 654–677 673
shock with the shear layer, that requires further analysis. Similar patterns are also seen in the other two frames
of Fig. 11, where Dcp/cp is plotted for j = 2 and j = 3. One notices a much larger difference at j = 2, while at
j = 3 the values are of the same order as that observed at j = 1. At j = 3, we have large values of Dcp/cp from
x = 0 to x = 1.8, which is not there in other two figures.
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Overall, the calculated results using S-OUCS4 scheme are seen to be adequate in capturing the equilibrium
laminar flow, whose receptivity to imposed acoustic, vortical and entropic disturbances will be studied in
future.

4. Convection of a shielded vortex in subsonic flows

Finally, the case for the convection of a shielded vortex is studied at low subsonic speed to check whether
the present method of domain decomposition extends to elliptic cases or not. This allows us to estimate the
error committed in the multiprocessor computing with respect the serial calculation of the same. In a shielded
vortex, the core is surrounded by an annular ring with vorticity of opposite sign. The shielded vortex studied
here correspond to the two-parameter inviscid distributed vortex given by,
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In the present work, we have used a1 = a2 = 1/2, that gives rise to a vortex with zero circulation and that cre-
ates the velocity and pressure distribution given in Section 4.1.1. of Ref. [15]. The vortex of Eq. (21) also is
characterized by the presence of an inflexion point for the velocity distribution i.e. ox

or ¼ 0. It is well known
that such velocity profiles are very susceptible to inviscid instabilities – as given in [20] as a necessary condition
for the centrifugal instability for two-dimensional non-axisymmetric disturbances. This instability is physical
in nature, as it was studied in [21] where the mono-polar vortex gave rise to a tripolar structure upon the appli-
cation of small amplitude disturbances, that could also be triggered by numerical error.

In the following, we have performed calculations for a case, where a vortex of non-dimensional strength
equal to 0.02 convects in a free stream at the Mach number M1 = 0.4. Subsonic cases are more sensitive
to the boundary closures than the supersonic case because for M1 < 1 the flow is elliptic in nature and the
waves are not unidirectional, as in the case of M1 > 1. For this reason, the flow in this case is more susceptible
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to reflection at the interface boundaries. The computational domain for the present case varies from
0 6 x 6 30 and 0 6 y 6 20 with 301 points in the x direction and 201 points in the y direction such that
Dx = Dy = 0.1. At t = 0, the vortex is centered at x = 7.5 and the computation is carried out till the non-
dimensional time of t = 30. It is to be noted that the velocity scale for this problem is the speed of sound
and hence the non-dimensional convection speed of the vortex is U1 = 0.4. In this section, we have used
the symmetrized scheme (S-OUCS3) developed in [14] to show the identical beneficial effects of symmetriza-
tion of any compact scheme. Also, explicit fourth order numerical dissipation is used to suppress high fre-
quency reflection from the inter-domain boundaries. Slight use of numerical damping is necessary to see
the best performance of the symmetrized compact schemes using the present parallel computing method, as
there will always be some high frequency non-zero reflections from the inter-domain boundaries, that when
left uncontrolled, can contaminate the solution everywhere [22]. Time dependent characteristics based bound-
ary conditions are used on density, at all the geometrical boundaries to avoid reflection from them.

Three different cases have been performed using 1, 3 and 6 processors splitting the problem in the stream-
wise (x) direction with six-point overlap strategy. The number of grid points are divided equally among the
processors to make a perfect load balance. The first case with single processor, corresponds to serial comput-
ing and is undertaken to measure the error of parallel computing with respect to this serial benchmark. The
results in Fig. 12, show the vorticity contours at different time instants for the three cases. The vertical lines in
these figures, indicate the locations of the inter-domain/inter-processor boundaries. Comparison of Figs. 12(b)
and (c) with Fig. 12(a) clearly shows that the results of parallel computations match perfectly with the sequen-
tial results and the error induced by reflections from the inter-domain boundaries are negligible and can not be
observed visually. A quantitative measure of the error (usequential � uparallel), in parallel computation frame-
work, is shown by the time variation of the L2 norm of the error in Fig. 13(a). The errors are negligibly small,
of the order of 10�7. It is also noted that the error remains the same when the number of processors increases.

In Fig. 13(b), elapsed time (in seconds) of these cases are plotted against the number of processors in order
to show the parallel efficiency of the present method. The figure shows that the parallel efficiency keeps coming
down with increase in number of processors. This is due to the larger number of information transfer across
the inter-domain boundaries, associated with six-point overlap method used in this test case.

5. Summary

Compact schemes have been specifically designed for parallel computing using domain decomposition
method. While retaining the excellent numerical properties of compact schemes for DNS, the streamwise bias
of these schemes have been reduced significantly by symmetrization so that the resultant scheme can be used
for parallel domain decomposition methods with minimal overlap. The remaining problems of parallel com-
puting using compact schemes are removed by adopting any one of the following: (a) larger overlap of sub-
domains, with and without filtering [15] of the solution; (b) reducing the overlap, with mandatory filtering of
the solution in sub-domains and (c) selective addition of artificial second and fourth order dissipation [18]. The
developed procedures for (a) and (b) have been calibrated for the propagation of a wave-packet following lin-
ear convection equation. We have performed detailed error analysis identifying the contributing sources and
showing that the six-point overlap is more accurate than the two-point overlap domain-decomposition
method. Procedures adopted for (c) has been shown by solving 3D unsteady Navier–Stokes equations for
Re = 1.12 · 106, M1 = 4 flow past a cone-cylinder.
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